
12

Lists and Arrays Revisited

Simple lists and arrays are the right tools for the many applications. Other situa-
tions require support for operations that cannot be implemented efficiently by the
standard list representations of Chapter 4. This chapter presents a range of topics,
whose unifying thread is that the data structures included are all list- or array-like.
These structures overcome some of the problems of simple linked list and con-
tiguous array representations. This chapter also seeks to reinforce the concept of
logical representation versus physical implementation, as some of the “list” imple-
mentations have quite different organizations internally.

Section 12.1 describes a series of representations for multilists, which are lists
that may contain sublists. Section 12.2 discusses representations for implementing
sparse matrices, large matrices where most of the elements have zero values. Sec-
tion 12.3 discusses memory management techniques, which are essentially a way
of allocating variable-length sections from a large array.

12.1 Multilists

Recall from Chapter 4 that a list is a finite, ordered sequence of items of the form
〈x0, x1, ..., xn−1〉 where n ≥ 0. We can represent the empty list by null or 〈〉.
In Chapter 4 we assumed that all list elements had the same data type. In this
section, we extend the definition of lists to allow elements to be arbitrary in nature.
In general, list elements are one of two types.

1. An atom, which is a data record of some type such as a number, symbol, or
string.

2. Another list, which is called a sublist.

A list containing sublists will be written as

〈x1, 〈y1, 〈a1, a2〉, y3〉, 〈z1, z2〉, x4〉.
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Figure 12.1 Example of a multilist represented by a tree.
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Figure 12.2 Example of a reentrant multilist. The shape of the structure is a
DAG (all edges point downward).

In this example, the list has four elements. The second element is the sublist
〈y1, 〈a1, a2〉, y3〉 and the third is the sublist 〈z1, z2〉. The sublist 〈y1, 〈a1, a2〉, y3〉
itself contains a sublist. If a list L has one or more sublists, we call L a multi-
list. Lists with no sublists are often referred to as linear lists or chains. Note that
this definition for multilist fits well with our definition of sets from Definition 2.1,
where a set’s members can be either primitive elements or sets.

We can restrict the sublists of a multilist in various ways, depending on whether
the multilist should have the form of a tree, a DAG, or a generic graph. A pure list
is a list structure whose graph corresponds to a tree, such as in Figure 12.1. In other
words, there is exactly one path from the root to any node, which is equivalent to
saying that no object may appear more than once in the list. In the pure list, each
pair of angle brackets corresponds to an internal node of the tree. The members of
the list correspond to the children for the node. Atoms on the list correspond to leaf
nodes.

A reentrant list is a list structure whose graph corresponds to a DAG. Nodes
might be accessible from the root by more than one path, which is equivalent to
saying that objects (including sublists) may appear multiple times in the list as long
as no cycles are formed. All edges point downward, from the node representing a
list or sublist to its elements. Figure 12.2 illustrates a reentrant list. To write out
this list in bracket notation, we can duplicate nodes as necessary. Thus, the bracket
notation for the list of Figure 12.2 could be written

〈〈〈a, b〉〉, 〈〈a, b〉, c〉, 〈c, d, e〉, 〈e〉〉.

For convenience, we will adopt a convention of allowing sublists and atoms to be
labeled, such as “L1:”. Whenever a label is repeated, the element corresponding to
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Figure 12.3 Example of a cyclic list. The shape of the structure is a directed
graph.

that label will be substituted when we write out the list. Thus, the bracket notation
for the list of Figure 12.2 could be written

〈〈L1 :〈a, b〉〉, 〈L1,L2 :c〉, 〈L2, d,L3 :e〉, 〈L3〉〉.

A cyclic list is a list structure whose graph corresponds to any directed graph,
possibly containing cycles. Figure 12.3 illustrates such a list. Labels are required to
write this in bracket notation. Here is the bracket notation for the list of Figure 12.3.

〈L1 :〈L2 :〈a,L1〉〉, 〈L2,L3 :b〉, 〈L3, c, d〉,L4 :〈L4〉〉.

Multilists can be implemented in a number of ways. Most of these should be
familiar from implementations suggested earlier in the book for list, tree, and graph
data structures.

One simple approach is to use a simple array to represent the list. This works
well for chains with fixed-length elements, equivalent to the simple array-based list
of Chapter 4. We can view nested sublists as variable-length elements. To use this
approach, we require some indication of the beginning and end of each sublist. In
essence, we are using a sequential tree implementation as discussed in Section 6.5.
This should be no surprise, because the pure list is equivalent to a general tree
structure. Unfortunately, as with any sequential representation, access to the nth
sublist must be done sequentially from the beginning of the list.

Because pure lists are equivalent to trees, we can also use linked allocation
methods to support direct access to the list of children. Simple linear lists are
represented by linked lists. Pure lists can be represented as linked lists with an
additional tag field to indicate whether the node is an atom or a sublist. If it is a
sublist, the data field points to the first element on the sublist. This is illustrated by
Figure 12.4.

Another approach is to represent all list elements with link nodes storing two
pointer fields, except for atoms. Atoms just contain data. This is the system used by
the programming language LISP. Figure 12.5 illustrates this representation. Either
the pointer contains a tag bit to identify what it points to, or the object being pointed
to stores a tag bit to identify itself. Tags distinguish atoms from list nodes. This
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Figure 12.4 Linked representation for the pure list of Figure 12.1. The first field
in each link node stores a tag bit. If the tag bit stores “+,” then the data field stores
an atom. If the tag bit stores “−,” then the data field stores a pointer to a sublist.

root
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Figure 12.5 LISP-like linked representation for the cyclic multilist of Fig-
ure 12.3. Each link node stores two pointers. A pointer either points to an atom,
or to another link node. Link nodes are represented by two boxes, and atoms by
circles.

implementation can easily support reentrant and cyclic lists, because non-atoms
can point to any other node.

12.2 Matrix Representations

Sometimes we need to represent a large, two-dimensional matrix where many of
the elements have a value of zero. One example is the lower triangular matrix that
results from solving systems of simultaneous equations. A lower triangular matrix
stores zero values at all positions [r, c] such that r < c, as shown in Figure 12.6(a).
Thus, the upper-right triangle of the matrix is always zero. Another example is
representing undirected graphs in an adjacency matrix (see Project 11.2). Because
all edges between Vertices i and j go in both directions, there is no need to store
both. Instead we can just store one edge going from the higher-indexed vertex to
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a00 0 0 0
a10 a11 0 0
a20 a21 a22 0
a30 a31 a32 a33

(a)

a00 a01 a02 a03
0 a11 a12 a13
0 0 a22 a23
0 0 0 a33

(b)

Figure 12.6 Triangular matrices. (a) A lower triangular matrix. (b) An upper
triangular matrix.

the lower-indexed vertex. In this case, only the lower triangle of the matrix can
have non-zero values.

We can take advantage of this fact to save space. Instead of storing n(n+ 1)/2
pieces of information in an n × n array, it would save space to use a list of length
n(n+ 1)/2. This is only practical if some means can be found to locate within the
list the element that would correspond to position [r, c] in the original matrix.

We will derive an equation to convert position [r, c] to a position in a one-
dimensional list to store the lower triangular matrix. Note that row 0 of the matrix
has one non-zero value, row 1 has two non-zero values, and so on. Thus, row r
is preceded by r rows with a total of

∑r
k=1 k = (r2 + r)/2 non-zero elements.

Adding c to reach the cth position in the rth row yields the following equation to
convert position [r, c] in the original matrix to the correct position in the list.

matrix[r, c] = list[(r2 + r)/2 + c].

A similar equation can be used to convert coordinates in an upper triangular matrix,
that is, a matrix with zero values at positions [r, c] such that r > c, as shown in
Figure 12.6(b). For an n× n upper triangular matrix, the equation to convert from
matrix coordinates to list positions would be

matrix[r, c] = list[rn− (r2 + r)/2 + c].

A more difficult situation arises when the vast majority of values stored in an
n ×m matrix are zero, but there is no restriction on which positions are zero and
which are non-zero. This is known as a sparse matrix.

One approach to representing a sparse matrix is to concatenate (or otherwise
combine) the row and column coordinates into a single value and use this as a key
in a hash table. Thus, if we want to know the value of a particular position in the
matrix, we search the hash table for the appropriate key. If a value for this position
is not found, it is assumed to be zero. This is an ideal approach when all queries to
the matrix are in terms of access by specified position. However, if we wish to find
the first non-zero element in a given row, or the next non-zero element below the
current one in a given column, then the hash table requires us to check sequentially
through all possible positions in some row or column.
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Another approach is to implement the matrix as an orthogonal list. Consider
the following sparse matrix:

10 23 0 0 0 0 19
45 5 0 93 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

40 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 32 0 12 0 0 7

The corresponding orthogonal array is shown in Figure 12.7. Here we have a
list of row headers, each of which contains a pointer to a list of matrix records.
A second list of column headers also contains pointers to matrix records. Each
non-zero matrix element stores pointers to its non-zero neighbors in the row, both
following and preceding it. Each non-zero element also stores pointers to its non-
zero neighbors following and preceding it in the column. Thus, each non-zero
element stores its own value, its position within the matrix, and four pointers. Non-
zero elements are found by traversing a row or column list. Note that the first
non-zero element in a given row could be in any column; likewise, the neighboring
non-zero element in any row or column list could be at any (higher) row or column
in the array. Thus, each non-zero element must also store its row and column
position explicitly.

To find if a particular position in the matrix contains a non-zero element, we
traverse the appropriate row or column list. For example, when looking for the
element at Row 7 and Column 1, we can traverse the list either for Row 7 or for
Column 1. When traversing a row or column list, if we come to an element with
the correct position, then its value is non-zero. If we encounter an element with
a higher position, then the element we are looking for is not in the sparse matrix.
In this case, the element’s value is zero. For example, when traversing the list
for Row 7 in the matrix of Figure 12.7, we first reach the element at Row 7 and
Column 1. If this is what we are looking for, then the search can stop. If we are
looking for the element at Row 7 and Column 2, then the search proceeds along the
Row 7 list to next reach the element at Column 3. At this point we know that no
element at Row 7 and Column 2 is stored in the sparse matrix.

Insertion and deletion can be performed by working in a similar way to insert
or delete elements within the appropriate row and column lists.

Each non-zero element stored in the sparse matrix representation takes much
more space than an element stored in a simple n × n matrix. When is the sparse
matrix more space efficient than the standard representation? To calculate this, we
need to determine how much space the standard matrix requires, and how much
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Figure 12.7 The orthogonal list sparse matrix representation.

the sparse matrix requires. The size of the sparse matrix depends on the number
of non-zero elements (we will refer to this value as NNZ), while the size of the
standard matrix representation does not vary. We need to know the (relative) sizes
of a pointer and a data value. For simplicity, our calculation will ignore the space
taken up by the row and column header (which is not much affected by the number
of elements in the sparse array).

As an example, assume that a data value, a row or column index, and a pointer
each require four bytes. An n ×m matrix requires 4nm bytes. The sparse matrix
requires 28 bytes per non-zero element (four pointers, two array indices, and one
data value). If we set X to be the percentage of non-zero elements, we can solve
for the value of X below which the sparse matrix representation is more space
efficient. Using the equation

28X = 4mn

and solving forX , we find that the sparse matrix using this implementation is more
space efficient when X < 1/7, that is, when less than about 14% of the elements
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are non-zero. Different values for the relative sizes of data values, pointers, or
matrix indices can lead to a different break-even point for the two implementations.

The time required to process a sparse matrix should ideally depend on NNZ.
When searching for an element, the cost is the number of elements preceding the
desired element on its row or column list. The cost for operations such as adding
two matrices should be Θ(n + m) in the worst case when the one matrix stores n
non-zero elements and the other stores m non-zero elements.

Another representation for sparse matrices is sometimes called the Yale rep-
resentation. Matlab uses a similar representation, with a primary difference being
that the Matlab representation uses column-major order.1 The Matlab representa-
tion stores the sparse matrix using three lists. The first is simply all of the non-zero
element values, in column-major order. The second list stores the start position
within the first list for each column. The third list stores the row positions for each
of the corresponding non-zero values. In the Yale representation, the matrix of
Figure 12.7 would appear as:

Values: 10 45 40 23 5 32 93 12 19 7
Column starts: 0 3 5 5 7 7 7 7
Row positions: 0 1 4 0 1 7 1 7 0 7

If the matrix has c columns, then the total space required will be proportional to
c + 2NNZ. This is good in terms of space. It allows fairly quick access to any
column, and allows for easy processing of the non-zero values along a column.
However, it does not do a good job of providing access to the values along a row,
and is terrible when values need to be added or removed from the representation.
Fortunately, when doing computations such as adding or multiplying two sparse
matrices, the processing of the input matrices and construction of the output matrix
can be done reasonably efficiently.

12.3 Memory Management

Most data structures are designed to store and access objects of uniform size. A
typical example would be an integer stored in a list or a queue. Some applications
require the ability to store variable-length records, such as a string of arbitrary
length. One solution is to store in the list or queue fixed-length pointers to the
variable-length strings. This is fine for data structures stored in main memory.
But if the collection of strings is meant to be stored on disk, then we might need
to worry about where exactly these strings are stored. And even when stored in
main memory, something has to figure out where there are available bytes to hold
the string. We could easily store variable-size records in a queue or stack, where

1Scientific packages tend to prefer column-oriented representations for matrices since this the
dominant access need for the operations to be performed.
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/** Memory Manager interface */
interface MemManADT {

/** Store a record and return a handle to it */
public MemHandle insert(byte[] info);

/** Get back a copy of a stored record */
public byte[] get(MemHandle h);

/** Release the space associated with a record */
public void release(MemHandle h);

}

Figure 12.8 A simple ADT for a memory manager.

the restricted order of insertions and deletions makes this easy to deal with. But
in a language like C++ or Java, programmers can allocate and deallocate space in
complex ways through use of new. Where does this space come from? This section
discusses memory management techniques for the general problem of handling
space requests of variable size.

The basic model for memory management is that we have a (large) block of
contiguous memory locations, which we will call the memory pool. Periodically,
memory requests are issued for some amount of space in the pool. The memory
manager has the job of finding a contiguous block of locations of at least the re-
quested size from somewhere within the memory pool. Honoring such a request
is called a memory allocation. The memory manager will typically return some
piece of information that the requester can hold on to so that later it can recover
the record that was just stored by the memory manager. This piece of information
is called a handle. At some point, space that has been requested might no longer
be needed, and this space can be returned to the memory manager so that it can be
reused. This is called a memory deallocation. The memory manager should then
be able to reuse this space to satisfy later memory requests. We can define an ADT
for the memory manager as shown in Figure 12.8.

The user of the MemManager ADT provides a pointer (in parameter info) to
space that holds some record or message to be stored or retrieved. This is similar
to the Java basic file read/write methods presented in Section 8.4. The fundamental
idea is that the client gives messages to the memory manager for safe keeping. The
memory manager returns a “receipt” for the message in the form of a MemHandle
object. Of course to be practical, a MemHandle must be much smaller than the
typical message to be stored. The client holds the MemHandle object until it
wishes to get the message back.

Method insert lets the client tell the memory manager the length and con-
tents of the message to be stored. This ADT assumes that the memory manager will
remember the length of the message associated with a given handle (perhaps in the
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Figure 12.9 Dynamic storage allocation model. Memory is made up of a series
of variable-size blocks, some allocated and some free. In this example, shaded
areas represent memory currently allocated and unshaded areas represent unused
memory available for future allocation.

handle itself), thus method get does not include a length parameter but instead
returns the length of the message actually stored. Method release allows the
client to tell the memory manager to release the space that stores a given message.

When all inserts and releases follow a simple pattern, such as last requested,
first released (stack order), or first requested, first released (queue order), memory
management is fairly easy. We are concerned here with the general case where
blocks of any size might be requested and released in any order. This is known
as dynamic storage allocation. One example of dynamic storage allocation is
managing free store for a compiler’s runtime environment, such as the system-
level new operation in Java. Another example is managing main memory in a
multitasking operating system. Here, a program might require a certain amount
of space, and the memory manager must keep track of which programs are using
which parts of the main memory. Yet another example is the file manager for a
disk drive. When a disk file is created, expanded, or deleted, the file manager must
allocate or deallocate disk space.

A block of memory or disk space managed in this way is sometimes referred to
as a heap. The term “heap” is being used here in a different way than the heap data
structure discussed in Section 5.5. Here “heap” refers to the memory controlled by
a dynamic memory management scheme.

In the rest of this section, we first study techniques for dynamic memory man-
agement. We then tackle the issue of what to do when no single block of memory
in the memory pool is large enough to honor a given request.

12.3.1 Dynamic Storage Allocation

For the purpose of dynamic storage allocation, we view memory as a single array
which, after a series of memory requests and releases tends to become broken into
a series of variable-size blocks, where some of the blocks are free and some are
reserved or already allocated to store messages. The memory manager typically
uses a linked list to keep track of the free blocks, called the freelist, which is used
for servicing future memory requests. Figure 12.9 illustrates the situation that can
arise after a series of memory allocations and deallocations.

When a memory request is received by the memory manager, some block on
the freelist must be found that is large enough to service the request. If no such
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Small block: External fragmentation

Unused space in allocated block: Internal fragmentation

Figure 12.10 An illustration of internal and external fragmentation. The small
white block labeled ”External fragmentation” is too small to satisfy typical mem-
ory requests. The small grey block labeled ”Internal fragmentation” was allocated
as part of the grey block to its left, but it does not actually store information.

block is found, then the memory manager must resort to a failure policy such as
discussed in Section 12.3.2.

If there is a request for m words, and no block exists of exactly size m, then
a larger block must be used instead. One possibility in this case is that the entire
block is given away to the memory allocation request. This might be desirable
when the size of the block is only slightly larger than the request. This is because
saving a tiny block that is too small to be useful for a future memory request might
not be worthwhile. Alternatively, for a free block of size k, with k > m, up to
k − m space may be retained by the memory manager to form a new free block,
while the rest is used to service the request.

Memory managers can suffer from two types of fragmentation, which refers to
unused space that is too small to be useful. External fragmentation occurs when
a series of memory requests and releases results in small free blocks. Internal
fragmentation occurs when more than m words are allocated to a request for m
words, wasting free storage. This is equivalent to the internal fragmentation that
occurs when files are allocated in multiples of the cluster size. The difference
between internal and external fragmentation is illustrated by Figure 12.10.

Some memory management schemes sacrifice space to internal fragmentation
to make memory management easier (and perhaps reduce external fragmentation).
For example, external fragmentation does not happen in file management systems
that allocate file space in clusters. Another example of sacrificing space to inter-
nal fragmentation so as to simplify memory management is the buddy method
described later in this section.

The process of searching the memory pool for a block large enough to service
the request, possibly reserving the remaining space as a free block, is referred to as
a sequential fit method.

Sequential Fit Methods

Sequential-fit methods attempt to find a “good” block to service a storage request.
The three sequential-fit methods described here assume that the free blocks are
organized into a doubly linked list, as illustrated by Figure 12.11.
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Figure 12.11 A doubly linked list of free blocks as seen by the memory manager.
Shaded areas represent allocated memory. Unshaded areas are part of the freelist.

There are two basic approaches to implementing the freelist. The simpler ap-
proach is to store the freelist separately from the memory pool. In other words,
a simple linked-list implementation such as described in Chapter 4 can be used,
where each node of the linked list contains a pointer to a single free block in the
memory pool. This is fine if there is space available for the linked list itself, sepa-
rate from the memory pool.

The second approach to storing the freelist is more complicated but saves space.
Because the free space is free, it can be used by the memory manager to help it do
its job. That is, the memory manager can temporarily “borrow” space within the
free blocks to maintain its doubly linked list. To do so, each unallocated block must
be large enough to hold these pointers. In addition, it is usually worthwhile to let
the memory manager add a few bytes of space to each reserved block for its own
purposes. In other words, a request for m bytes of space might result in slightly
more than m bytes being allocated by the memory manager, with the extra bytes
used by the memory manager itself rather than the requester. We will assume that
all memory blocks are organized as shown in Figure 12.12, with space for tags and
linked list pointers. Here, free and reserved blocks are distinguished by a tag bit
at both the beginning and the end of the block, for reasons that will be explained.
In addition, both free and reserved blocks have a size indicator immediately after
the tag bit at the beginning of the block to indicate how large the block is. Free
blocks have a second size indicator immediately preceding the tag bit at the end of
the block. Finally, free blocks have left and right pointers to their neighbors in the
free block list.

The information fields associated with each block permit the memory manager
to allocate and deallocate blocks as needed. When a request comes in for m words
of storage, the memory manager searches the linked list of free blocks until it finds
a “suitable” block for allocation. How it determines which block is suitable will
be discussed below. If the block contains exactly m words (plus space for the tag
and size fields), then it is removed from the freelist. If the block (of size k) is large
enough, then the remaining k −m words are reserved as a block on the freelist, in
the current location.

When a block F is freed, it must be merged into the freelist. If we do not
care about merging adjacent free blocks, then this is a simple insertion into the
doubly linked list of free blocks. However, we would like to merge adjacent blocks,
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Figure 12.12 Blocks as seen by the memory manager. Each block includes
additional information such as freelist link pointers, start and end tags, and a size
field. (a) The layout for a free block. The beginning of the block contains the tag
bit field, the block size field, and two pointers for the freelist. The end of the block
contains a second tag field and a second block size field. (b) A reserved block of
k bytes. The memory manager adds to these k bytes an additional tag bit field and
block size field at the beginning of the block, and a second tag field at the end of
the block.
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Figure 12.13 Adding block F to the freelist. The word immediately preceding
the start of F in the memory pool stores the tag bit of the preceding block P. If P
is free, merge F into P. We find the end of F by using F’s size field. The word
following the end of F is the tag field for block S. If S is free, merge it into F.

because this allows the memory manager to serve requests of the largest possible
size. Merging is easily done due to the tag and size fields stored at the ends of each
block, as illustrated by Figure 12.13. Here, the memory manager first checks the
unit of memory immediately preceding block F to see if the preceding block (call
it P) is also free. If it is, then the memory unit before P’s tag bit stores the size
of P, thus indicating the position for the beginning of the block in memory. P can
then simply have its size extended to include block F. If block P is not free, then
we just add block F to the freelist. Finally, we also check the bit following the end
of block F. If this bit indicates that the following block (call it S) is free, then S is
removed from the freelist and the size of F is extended appropriately.
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We now consider how a “suitable” free block is selected to service a memory
request. To illustrate the process, assume that we have a memory pool with 200
units of storage. After some series of allocation requests and releases, we have
reached a point where there are four free blocks on the freelist of sizes 25, 35, 32,
and 45 (in that order). Assume that a request is made for 30 units of storage. For
our examples, we ignore the overhead imposed for the tag, link, and size fields
discussed above.

The simplest method for selecting a block would be to move down the free
block list until a block of size at least 30 is found. Any remaining space in this
block is left on the freelist. If we begin at the beginning of the list and work down
to the first free block at least as large as 30, we select the block of size 35. 30 units
of storage will be allocated, leaving a free block with 5 units of space. Because this
approach selects the first block with enough space, it is called first fit. A simple
variation that will improve performance is, instead of always beginning at the head
of the freelist, remember the last position reached in the previous search and start
from there. When the end of the freelist is reached, search begins again at the
head of the freelist. This modification reduces the number of unnecessary searches
through small blocks that were passed over by previous requests.

There is a potential disadvantage to first fit: It might “waste” larger blocks
by breaking them up, and so they will not be available for large requests later.
A strategy that avoids using large blocks unnecessarily is called best fit. Best fit
looks at the entire list and picks the smallest block that is at least as large as the
request (i.e., the “best” or closest fit to the request). Continuing with the preceding
example, the best fit for a request of 30 units is the block of size 32, leaving a
remainder of size 2. Best fit has the disadvantage that it requires that the entire list
be searched. Another problem is that the remaining portion of the best-fit block is
likely to be small, and thus useless for future requests. In other words, best fit tends
to maximize problems of external fragmentation while it minimizes the chance of
not being able to service an occasional large request.

A strategy contrary to best fit might make sense because it tends to minimize the
effects of external fragmentation. This is called worst fit, which always allocates
the largest block on the list hoping that the remainder of the block will be useful
for servicing a future request. In our example, the worst fit is the block of size
45, leaving a remainder of size 15. If there are a few unusually large requests,
this approach will have less chance of servicing them. If requests generally tend
to be of the same size, then this might be an effective strategy. Like best fit, worst
fit requires searching the entire freelist at each memory request to find the largest
block. Alternatively, the freelist can be ordered from largest to smallest free block,
possibly by using a priority queue implementation.

Which strategy is best? It depends on the expected types of memory requests.
If the requests are of widely ranging size, best fit might work well. If the requests
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tend to be of similar size, with rare large and small requests, first or worst fit might
work well. Unfortunately, there are always request patterns that one of the three
sequential fit methods will service, but which the other two will not be able to
service. For example, if the series of requests 600, 650, 900, 500, 100 is made to
a freelist containing blocks 500, 700, 650, 900 (in that order), the requests can all
be serviced by first fit, but not by best fit. Alternatively, the series of requests 600,
500, 700, 900 can be serviced by best fit but not by first fit on this same freelist.

Buddy Methods

Sequential-fit methods rely on a linked list of free blocks, which must be searched
for a suitable block at each memory request. Thus, the time to find a suitable free
block would be Θ(n) in the worst case for a freelist containing n blocks. Merging
adjacent free blocks is somewhat complicated. Finally, we must either use addi-
tional space for the linked list, or use space within the memory pool to support the
memory manager operations. In the second option, both free and reserved blocks
require tag and size fields. Fields in free blocks do not cost any space (because they
are stored in memory that is not otherwise being used), but fields in reserved blocks
create additional overhead.

The buddy system solves most of these problems. Searching for a block of
the proper size is efficient, merging adjacent free blocks is simple, and no tag or
other information fields need be stored within reserved blocks. The buddy system
assumes that memory is of size 2N for some integer N . Both free and reserved
blocks will always be of size 2k for k ≤ N . At any given time, there might be both
free and reserved blocks of various sizes. The buddy system keeps a separate list
for free blocks of each size. There can be at most N such lists, because there can
only be N distinct block sizes.

When a request comes in for m words, we first determine the smallest value of
k such that 2k ≥ m. A block of size 2k is selected from the free list for that block
size if one exists. The buddy system does not worry about internal fragmentation:
The entire block of size 2k is allocated.

If no block of size 2k exists, the next larger block is located. This block is split
in half (repeatedly if necessary) until the desired block of size 2k is created. Any
other blocks generated as a by-product of this splitting process are placed on the
appropriate freelists.

The disadvantage of the buddy system is that it allows internal fragmentation.
For example, a request for 257 words will require a block of size 512. The primary
advantages of the buddy system are (1) there is less external fragmentation; (2)
search for a block of the right size is cheaper than, say, best fit because we need
only find the first available block on the block list for blocks of size 2k; and (3)
merging adjacent free blocks is easy.
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Figure 12.14 Example of the buddy system. (a) Blocks of size 8. (b) Blocks of
size 4.

The reason why this method is called the buddy system is because of the way
that merging takes place. The buddy for any block of size 2k is another block
of the same size, and with the same address (i.e., the byte position in memory,
read as a binary value) except that the kth bit is reversed. For example, the block
of size 8 with beginning address 0000 in Figure 12.14(a) has buddy with address
1000. Likewise, in Figure 12.14(b), the block of size 4 with address 0000 has
buddy 0100. If free blocks are sorted by address value, the buddy can be found by
searching the correct block-size list. Merging simply requires that the address for
the combined buddies be moved to the freelist for the next larger block size.

Other Memory Allocation Methods

In addition to sequential-fit and buddy methods, there are many ad hoc approaches
to memory management. If the application is sufficiently complex, it might be
desirable to break available memory into several memory zones, each with a differ-
ent memory management scheme. For example, some zones might have a simple
memory access pattern of first-in, first-out. This zone can therefore be managed ef-
ficiently by using a simple queue. Another zone might allocate only records of fixed
size, and so can be managed with a simple freelist as described in Section 4.1.2.
Other zones might need one of the general-purpose memory allocation methods
discussed in this section. The advantage of zones is that some portions of memory
can be managed more efficiently. The disadvantage is that one zone might fill up
while other zones have excess free memory if the zone sizes are chosen poorly.

Another approach to memory management is to impose a standard size on all
memory requests. We have seen an example of this concept already in disk file
management, where all files are allocated in multiples of the cluster size. This
approach leads to internal fragmentation, but managing files composed of clusters
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is easier than managing arbitrarily sized files. The cluster scheme also allows us
to relax the restriction that the memory request be serviced by a contiguous block
of memory. Most disk file managers and operating system main memory managers
work on a cluster or page system. Block management is usually done with a buffer
pool to allocate available blocks in main memory efficiently.

12.3.2 Failure Policies and Garbage Collection

At some point when processing a series of requests, a memory manager could en-
counter a request for memory that it cannot satisfy. In some situations, there might
be nothing that can be done: There simply might not be enough free memory to
service the request, and the application may require that the request be serviced im-
mediately. In this case, the memory manager has no option but to return an error,
which could in turn lead to a failure of the application program. However, in many
cases there are alternatives to simply returning an error. The possible options are
referred to collectively as failure policies.

In some cases, there might be sufficient free memory to satisfy the request,
but it is scattered among small blocks. This can happen when using a sequential-
fit memory allocation method, where external fragmentation has led to a series of
small blocks that collectively could service the request. In this case, it might be
possible to compact memory by moving the reserved blocks around so that the
free space is collected into a single block. A problem with this approach is that
the application must somehow be able to deal with the fact that its data have now
been moved to different locations. If the application program relies on the absolute
positions of the data in any way, this would be disastrous. One approach for dealing
with this problem involves the handles returned by the memory manager. A handle
works as a second level of indirection to a memory location. The memory allocation
routine does not return a pointer to the block of storage, but rather a pointer to a the
handle that in turn gives access to the storage. The handle never moves its position,
but the position of the block might be moved and the value of the handle updated.
Of course, this requires that the memory manager keep track of the handles and
how they associate with the stored messages. Figure 12.15 illustrates the concept.

Another failure policy that might work in some applications is to defer the
memory request until sufficient memory becomes available. For example, a multi-
tasking operating system could adopt the strategy of not allowing a process to run
until there is sufficient memory available. While such a delay might be annoying
to the user, it is better than halting the entire system. The assumption here is that
other processes will eventually terminate, freeing memory.

Another option might be to allocate more memory to the memory manager. In
a zoned memory allocation system where the memory manager is part of a larger
system, this might be a viable option. In a Java program that implements its own
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Memory BlockHandle

Figure 12.15 Using handles for dynamic memory management. The memory
manager returns the address of the handle in response to a memory request. The
handle stores the address of the actual memory block. In this way, the memory
block might be moved (with its address updated in the handle) without disrupting
the application program.

memory manager, it might be possible to get more memory from the system-level
new operator, such as is done by the freelist of Section 4.1.2.

The last failure policy that we will consider is garbage collection. Consider
the following series of statements.

int[] p = new int[5];
int[] q = new int[10];
p = q;

While in Java this would be no problem (due to automatic garbage collection), in
languages such as C++, this would be considered bad form because the original
space allocated to p is lost as a result of the third assignment. This space cannot
be used again by the program. Such lost memory is referred to as garbage, also
known as a memory leak. When no program variable points to a block of space,
no future access to that space is possible. Of course, if another variable had first
been assigned to point to p’s space, then reassigning p would not create garbage.

Some programming languages take a different view towards garbage. In par-
ticular, the LISP programming language uses the multilist representation of Fig-
ure 12.5, and all storage is in the form either of internal nodes with two pointers
or atoms. Figure 12.16 shows a typical collection of LISP structures, headed by
variables named A, B, and C, along with a freelist.

In LISP, list objects are constantly being put together in various ways as tem-
porary variables, and then all reference to them is lost when the object is no longer
needed. Thus, garbage is normal in LISP, and in fact cannot be avoided during
routine program behavior. When LISP runs out of memory, it resorts to a garbage
collection process to recover the space tied up in garbage. Garbage collection con-
sists of examining the managed memory pool to determine which parts are still
being used and which parts are garbage. In particular, a list is kept of all program
variables, and any memory locations not reachable from one of these variables are
considered to be garbage. When the garbage collector executes, all unused memory
locations are placed in free store for future access. This approach has the advantage
that it allows for easy collection of garbage. It has the disadvantage, from a user’s
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Figure 12.16 Example of LISP list variables, including the system freelist.

point of view, that every so often the system must halt while it performs garbage
collection. For example, garbage collection is noticeable in the Emacs text edi-
tor, which is normally implemented in LISP. Occasionally the user must wait for a
moment while the memory management system performs garbage collection.

The Java programming language also makes use of garbage collection. As in
LISP, it is common practice in Java to allocate dynamic memory as needed, and to
later drop all references to that memory. The garbage collector is responsible for
reclaiming such unused space as necessary. This might require extra time when
running the program, but it makes life considerably easier for the programmer. In
contrast, many large applications written in C++ (even commonly used commercial
software) contain memory leaks that will in time cause the program to fail.

Several algorithms have been used for garbage collection. One is the reference
count algorithm. Here, every dynamically allocated memory block includes space
for a count field. Whenever a pointer is directed to a memory block, the reference
count is increased. Whenever a pointer is directed away from a memory block,
the reference count is decreased. If the count ever becomes zero, then the memory
block is considered garbage and is immediately placed in free store. This approach
has the advantage that it does not require an explicit garbage collection phase, be-
cause information is put in free store immediately when it becomes garbage.

Reference counts are used by the UNIX file system. Files can have multiple
names, called links. The file system keeps a count of the number of links to each
file. Whenever a file is “deleted,” in actuality its link field is simply reduced by
one. If there is another link to the file, then no space is recovered by the file system.
When the number of links goes to zero, the file’s space becomes available for reuse.
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g h

Figure 12.17 Garbage cycle example. All memory elements in the cycle have
non-zero reference counts because each element has one pointer to it, even though
the entire cycle is garbage (i.e., no static variable in the program points to it).

Reference counts have several major disadvantages. First, a reference count
must be maintained for each memory object. This works well when the objects are
large, such as a file. However, it will not work well in a system such as LISP where
the memory objects typically consist of two pointers or a value (an atom). Another
major problem occurs when garbage contains cycles. Consider Figure 12.17. Here
each memory object is pointed to once, but the collection of objects is still garbage
because no pointer points to the collection. Thus, reference counts only work when
the memory objects are linked together without cycles, such as the UNIX file sys-
tem where files can only be organized as a DAG.

Another approach to garbage collection is the mark/sweep strategy. Here, each
memory object needs only a single mark bit rather than a reference counter field.
When free store is exhausted, a separate garbage collection phase takes place as
follows.

1. Clear all mark bits.
2. Perform depth-first search (DFS) following pointers beginning with each

variable on the system’s list of static variables. Each memory element en-
countered during the DFS has its mark bit turned on.

3. A “sweep” is made through the memory pool, visiting all elements. Un-
marked elements are considered garbage and placed in free store.

The advantages of the mark/sweep approach are that it needs less space than is
necessary for reference counts, and it works for cycles. However, there is a major
disadvantage. This is a “hidden” space requirement needed to do the processing.
DFS is a recursive algorithm: Either it must be implemented recursively, in which
case the compiler’s runtime system maintains a stack, or else the memory manager
can maintain its own stack. What happens if all memory is contained in a single
linked list? Then the depth of the recursion (or the size of the stack) is the number
of memory cells! Unfortunately, the space for the DFS stack must be available at
the worst conceivable time, that is, when free memory has been exhausted.

Fortunately, a clever technique allows DFS to be performed without requiring
additional space for a stack. Instead, the structure being traversed is used to hold
the stack. At each step deeper into the traversal, instead of storing a pointer on the
stack, we “borrow” the pointer being followed. This pointer is set to point back
to the node we just came from in the previous step, as illustrated by Figure 12.18.
Each borrowed pointer stores an additional bit to tell us whether we came down
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Figure 12.18 Example of the Deutsch-Schorr-Waite garbage collection alg-
orithm. (a) The initial multilist structure. (b) The multilist structure of (a) at
the instant when link node 5 is being processed by the garbage collection alg-
orithm. A chain of pointers stretching from variable prev to the head node of the
structure has been (temporarily) created by the garbage collection algorithm.

the left branch or the right branch of the link node being pointed to. At any given
instant we have passed down only one path from the root, and we can follow the
trail of pointers back up. As we return (equivalent to popping the recursion stack),
we set the pointer back to its original position so as to return the structure to its
original condition. This is known as the Deutsch-Schorr-Waite garbage collection
algorithm.

12.4 Further Reading

For information on LISP, see The Little LISPer by Friedman and Felleisen [FF89].
Another good LISP reference is Common LISP: The Language by Guy L. Steele
[Ste90]. For information on Emacs, which is both an excellent text editor and
a programming environment, see the GNU Emacs Manual by Richard Stallman
[Sta11b]. You can get more information about Java’s garbage collection system
from The Java Programming Language by Ken Arnold and James Gosling [AG06].

For more details on sparse matrix representations, the Yale representation is de-
scribed by Eisenstat, Schultz and Sherman [ESS81]. The MATLAB sparse matrix
representation is described by Gilbert, Moler, and Schreiber [GMS91].
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Figure 12.19 Some example multilists.

An introductory text on operating systems covers many topics relating to mem-
ory management issues, including layout of files on disk and caching of information
in main memory. All of the topics covered here on memory management, buffer
pools, and paging are relevant to operating system implementation. For example,
see Operating Systems by William Stallings[Sta11a].

12.5 Exercises

12.1 For each of the following bracket notation descriptions, draw the equivalent
multilist in graphical form such as shown in Figure 12.2.

(a) 〈a, b, 〈c, d, e〉, 〈f, 〈g〉, h〉〉
(b) 〈a, b, 〈c, d, L1:e〉, L1〉
(c) 〈L1:a, L1, 〈L2:b〉, L2, 〈L1〉〉

12.2 (a) Show the bracket notation for the list of Figure 12.19(a).
(b) Show the bracket notation for the list of Figure 12.19(b).
(c) Show the bracket notation for the list of Figure 12.19(c).

12.3 Given the linked representation of a pure list such as
〈x1, 〈y1, y2, 〈z1, z2〉, y4〉, 〈w1, w2〉, x4〉,

write an in-place reversal algorithm to reverse the sublists at all levels in-
cluding the topmost level. For this example, the result would be a linked
representation corresponding to

〈x4, 〈w2, w1〉, 〈y4, 〈z2, z1〉, y2, y1〉, x1〉.

12.4 What fraction of the values in a matrix must be zero for the sparse matrix
representation of Section 12.2 to be more space efficient than the standard
two-dimensional matrix representation when data values require eight bytes,
array indices require two bytes, and pointers require four bytes?

12.5 Write a function to add an element at a given position to the sparse matrix
representation of Section 12.2.

12.6 Write a function to delete an element from a given position in the sparse
matrix representation of Section 12.2.
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12.7 Write a function to transpose a sparse matrix as represented in Section 12.2.
12.8 Write a function to add two sparse matrices as represented in Section 12.2.
12.9 Write memory manager allocation and deallocation routines for the situation

where all requests and releases follow a last-requested, first-released (stack)
order.

12.10 Write memory manager allocation and deallocation routines for the situation
where all requests and releases follow a last-requested, last-released (queue)
order.

12.11 Show the result of allocating the following blocks from a memory pool of
size 1000 using first fit for each series of block requests. State if a given
request cannot be satisfied.

(a) Take 300 (call this block A), take 500, release A, take 200, take 300.
(b) Take 200 (call this block A), take 500, release A, take 200, take 300.
(c) Take 500 (call this block A), take 300, release A, take 300, take 200.

12.12 Show the result of allocating the following blocks from a memory pool of
size 1000 using best fit for each series of block requests. State if a given
request cannot be satisfied.

(a) Take 300 (call this block A), take 500, release A, take 200, take 300.
(b) Take 200 (call this block A), take 500, release A, take 200, take 300.
(c) Take 500 (call this block A), take 300, release A, take 300, take 200.

12.13 Show the result of allocating the following blocks from a memory pool of
size 1000 using worst fit for each series of block requests. State if a given
request cannot be satisfied.

(a) Take 300 (call this block A), take 500, release A, take 200, take 300.
(b) Take 200 (call this block A), take 500, release A, take 200, take 300.
(c) Take 500 (call this block A), take 300, release A, take 300, take 200.

12.14 Assume that the memory pool contains three blocks of free storage. Their
sizes are 1300, 2000, and 1000. Give examples of storage requests for which

(a) first-fit allocation will work, but not best fit or worst fit.
(b) best-fit allocation will work, but not first fit or worst fit.
(c) worst-fit allocation will work, but not first fit or best fit.

12.6 Projects

12.1 Implement the orthogonal list sparse matrix representation of Section 12.2.
Your implementation should support the following operations on the matrix:

• insert an element at a given position,
• delete an element from a given position,
• return the value of the element at a given position,
• take the transpose of a matrix,
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• add two matrices, and
• multiply two matrices.

12.2 Implement the Yale model for sparse matrices described at the end of Sec-
tion 12.2. Your implementation should support the following operations on
the matrix:

• insert an element at a given position,
• delete an element from a given position,
• return the value of the element at a given position,
• take the transpose of a matrix,
• add two matrices, and
• multiply two matrices.

12.3 Implement the MemManager ADT shown at the beginning of Section 12.3.
Use a separate linked list to implement the freelist. Your implementation
should work for any of the three sequential-fit methods: first fit, best fit, and
worst fit. Test your system empirically to determine under what conditions
each method performs well.

12.4 Implement the MemManager ADT shown at the beginning of Section 12.3.
Do not use separate memory for the free list, but instead embed the free list
into the memory pool as shown in Figure 12.12. Your implementation should
work for any of the three sequential-fit methods: first fit, best fit, and worst
fit. Test your system empirically to determine under what conditions each
method performs well.

12.5 Implement the MemManager ADT shown at the beginning of Section 12.3
using the buddy method of Section 12.3.1. Your system should support
requests for blocks of a specified size and release of previously requested
blocks.

12.6 Implement the Deutsch-Schorr-Waite garbage collection algorithm that is il-
lustrated by Figure 12.18.


